Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study of Diesel Cold Starting using both Cycle Analysis and Multidimensional Calculations

1991-02-01
910180
The physical in-cylinder processes and ignition during cold starting have been studied using computational models, with particular attention to the influences of blowby, heat transfer during the compression stroke, spray development, vaporization and fuel/air mixture formation and ignition. Two different modeling approaches were used. A thermodynamic zero dimensional cycle analysis program in which the fuel injection effects were not modeled, was used to determine overall and gas exchange effects. The three-dimensional KIVA-II code was used to determine details of the closed cycle events, with modified atomization, blowby and spray/wall impingement models, and a simplified model for ignition. The calculations were used to obtain an understanding of the cold starting process and to identify practical methods for improving cold starting of direct injection diesel engines.
Technical Paper

Computation of Premixed-Charge Combustion in Pancake and Pent-Roof Engines

1989-02-01
890670
Multidimensional computations were made of spark-ignited premixed-charge combustion in a pancake-combustion-chamber engine with a centrally located spark plug and in two pent-roof-chamber engines, one with a central spark plug and the other with dual lateral spark plugs. A global combustion submodel was used that accounts for laminar kinetics and turbulent mixing effects. The predictions were compared with available measurements in the pancake-chamber engine over a range of loads, speeds, and equivalence ratios. In all cases the computed and measured cylinder pressures agreed well in trends and magnitudes (within 8%) for the entire duration of combustion. Fair agreements were also obtained between predicted and measured values of wall heat flux and emission index of nitric oxide. In the pent-roof-chamber engines the predicted maximum cylinder pressures also agreed well with measurements (within 12%) in cases with MBT (Minimum spark advance for Best Torque) or advanced spark timing.
Technical Paper

Modeling Engine Spray/Wall Impingement

1988-02-01
880107
A computer model was used to study the impingement of sprays on walls. The spray model accounts for the effects of drop breakup, drop collision and coalescence, and the effect of drops on the gas turbulence. These effects have been shown to be important in high-pressure sprays where breakup of the liquid yields a core region near the nozzle containing large drops. A new submodel was developed to describe the spray/wall interaction process. The model uses an analogy with the oblique impact on a wall of liquid jets. Following impact, the trajectory of a drop is specified to be tangent to the wall surface. The computations were compared with recent endoscope pictures of engine sprays impinging on a piston bowl and also with constant-volume-bomb measurements of spray shape and penetration. Predictions of the effect of engine swirl, ambient gas pressure (density), wall inclination angle and the distance from the nozzle to the wall, were in good qualitative agreement with the experiments.
Technical Paper

Structure of High-Pressure Fuel Sprays

1987-02-01
870598
A multi-dimensional model was used to calculate interactions between spray drops and gas motions close to the nozzle in dense high-pressure sprays. The model also accounts for the phenomena of drop breakup, drop collision and coalescence, and the effect of drops, on the gas turbulence. The calculations used a new method to describe atomization (a boundary condition in current spray codes). The method assumes that atomization and drop breakup are indistinguishable processes within the dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops (‘blobs’) that have a size equal to the nozzle exit diameter. The injected ‘blobs’ breakup due to interaction with the gas as they penetrate, yielding a core region which contains relatively large drops. The computed core length agrees well with available measurements of core length in high-pressure sprays.
X